Following the light of the sun, we left the Old World.

— Inscription on Columbus' caravels

NASA

Jupiter’s Great Red Spot

NASA Image of the Day - Tue, 05/07/2024 - 2:15pm
This image of Jupiter’s iconic Great Red Spot and surrounding turbulent zones was captured by NASA’s Juno spacecraft. The color-enhanced image is a combination of three separate images taken on April 1, 2018, as Juno performed its 12th close flyby of Jupiter. At the time the images were taken, the spacecraft was 15,379 miles (24,749 kilometers) to 30,633 miles (49,299 kilometers) from the tops of the clouds of the planet.
Categories: Astronomy, NASA

Jupiter’s Great Red Spot

NASA - Breaking News - Tue, 05/07/2024 - 2:07pm
NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran

This April 1, 2018, enhanced-color image of Jupiter’s Great Red Spot was captured by NASA’s Juno spacecraft. The image is a combination of three separate images taken as Juno performed its 12th close flyby of the planet.

The Great Red Spot, a swirling oval of clouds twice as wide as Earth, has been observed on the giant planet for more than 300 years. In 2021, findings from Juno showed that Jupiter’s storms are far taller than expected, with some extending 60 miles (100 kilometers) below the cloud tops and others, including the Great Red Spot, extending over 200 miles (350 kilometers).

Juno is a solar-powered spacecraft that spans the width of a basketball court and makes long, looping orbits around Jupiter. It seeks answers to questions about the origin and evolution of Jupiter, our solar system, and giant planets across the cosmos.

Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran

Categories: NASA

International SWOT Mission Can Improve Flood Prediction

NASA - Breaking News - Tue, 05/07/2024 - 1:05pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Flooding on the Souris River inundated this community in North Dakota in 2011. The U.S.-French SWOT satellite is giving scientists and water managers a new tool to look at floods in 3D, information that can improve predictions of where and how often flooding will occur.Credit: North Dakota State Water Commission

A partnership between NASA and the French space agency, the satellite is poised to help improve forecasts of where and when flooding will occur in Earth’s rivers, lakes, and reservoirs.

Rivers, lakes, and reservoirs are like our planet’s arteries, carrying life-sustaining water in interconnected networks. When Earth’s water cycle runs too fast, flooding can result, threatening lives and property. That risk is increasing as climate change alters precipitation patterns and more people are living in flood-prone areas worldwide.

Scientists and water managers use many types of data to predict flooding. This year they have a new tool at their disposal: freshwater data from the Surface Water and Ocean Topography (SWOT) satellite. The observatory, a collaboration between NASA and the French space agency, CNES (Centre National d’Études Spatiales), is measuring the height of nearly all water surfaces on Earth. SWOT was designed to measure every major river wider than about 300 feet (100 meters), and preliminary results suggest it may be able to observe much smaller rivers.

Flooding from monsoon rains covers a wide region of northeast Bangladesh in this Oct. 8, 2023, image showing data from SWOT. The U.S.-French satellite is the first to provide timely, precise water surface elevation information over entire regions at high resolution, enabling improved flooding forecasts. Credit: NASA/JPL-Caltech/UNC-Chapel Hill/Google Earth SWOT river slope data — like that depicted here for California’s Sacramento River — can improve predictions of how fast water flows through rivers and off landscapes. To calculate slope, scientists subtract the lower water elevation (right) from the higher one (left) and divide by segment length. Credit: NASA/JPL-Caltech/UNC-Chapel Hill/Google Earth

Stream gauges can accurately measure water levels in rivers, but only at individual locations, often spaced far apart. Many rivers have no stream gauges at all, particularly in countries without resources to maintain and monitor them. Gauges can also be disabled by floods and are unreliable when water overtops the riverbank and flows into areas they cannot measure.

SWOT provides a more comprehensive, 3D look at floods, measuring their height, width, and slope. Scientists can use this data to better track how floodwaters pulse across a landscape, improving predictions of where flooding will occur and how often.

Building a Better Flood Model

One effort to incorporate SWOT data into flood models is led by J. Toby Minear of the Cooperative Institute for Research in Environmental Sciences (CIRES) in Boulder, Colorado. Minear is investigating how to incorporate SWOT data into the National Oceanic and Atmospheric Administration’s National Water Model, which predicts the potential for flooding and its timing along U.S. rivers. SWOT freshwater data will fill in spatial gaps between gauges and help scientists like Minear determine the water levels (heights) at which flooding occurs at specific locations along rivers. 

UNC-Chapel Hill doctoral student Marissa Hughes levels a tripod to install a GPS unit to precisely measure the water surface elevation of a segment of New Zealand’s Waimakariri River. The measurements were used to calibrate and validate data from the U.S.-French SWOT satellite.Credit: Alyssa LaFaro/UNC Research

He expects SWOT to improve National Water Model data in multiple ways. For example, it will provide more accurate estimates of river slopes and how they change with streamflow. Generally speaking, the steeper a river’s slope, the faster its water flows. Hydrologic modelers use slope data to predict the speed water moves through a river and off a landscape.

SWOT will also help scientists and water managers quantify how much water lakes and reservoirs can store. While there are about 90,000 relatively large U.S. reservoirs, only a few thousand of them have water-level data that’s incorporated into the National Water Model. This limits scientists’ ability to know how reservoir levels relate to surrounding land elevations and potential flooding. SWOT is measuring tens of thousands of U.S. reservoirs, along with nearly all natural U.S. lakes larger than about two football fields combined.

Some countries, including the U.S., have made significant investments in river gauging networks and detailed local flood models. But in Africa, South Asia, parts of South America, and the Arctic, there’s little data for lakes and rivers. In such places, flood risk assessments often rely on rough estimates. Part of SWOT’s potential is that it will allow hydrologists to fill these gaps, providing information on where water is stored on landscapes and how much is flowing through rivers.

Tamlin Pavelsky, NASA’s SWOT freshwater science lead and a researcher at the University of North Carolina at Chapel Hill, says SWOT can help address the growing threat of flooding from extreme storms fueled by climate change. “Think about Houston and Hurricane Harvey in 2017,” he said. “It’s very unlikely we would have seen 60 inches of rain from one storm without climate change. Societies will need to update engineering design standards and floodplain maps as intense precipitation events become more common.”

Pavelsky says these changes in Earth’s water cycle are altering society’s assumptions about floods and what a floodplain is. “Hundreds of millions of people worldwide will be at increased risk of flooding in the future as rainfall events become increasingly intense and population growth occurs in flood-prone areas,” he added.

SWOT flood data will have other practical applications. For example, insurers can use models informed by SWOT data to improve flood hazard maps to better estimate an area’s potential damage and loss risks. A major reinsurance company, FM Global, is among SWOT’s 40 current early adopters — a global community of organizations working to incorporate SWOT data into their decision-making activities.

“Companies like FM Global and government agencies like the U.S. Federal Emergency Management Agency can fine tune their flood models by comparing them to SWOT data,” Pavelsky said. “Those better models will give us a more accurate picture of where and how often floods are likely to happen.”

More About the Mission

Launched on Dec. 16, 2022, from Vandenberg Space Force Base in central California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.

SWOT was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the project’s U.S. component. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, dual frequency Poseidon altimeter (developed by Thales Alenia Space), KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center, and managed the associated launch services.

For more on SWOT, visit:

https://swot.jpl.nasa.gov/.

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Written by Alan Buis

2024-060

Share Details Last Updated May 07, 2024 Related Terms Explore More 6 min read International SWOT Mission Can Improve Flood Prediction 

A partnership between NASA and the French space agency, the satellite is poised to help…

Article 5 hours ago
5 min read NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

As human populations grow, habitat loss threatens many creatures. Mapping wildlife habitat using satellites is…

Article 5 days ago
2 min read NASA Partner Zooniverse Receives White House Open Science Award

Congrats to NASA partner Zooniverse for being named winners in the White House’s Year of Open Science Recognition…

Article 5 days ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

White Sands Propulsion Team Tests 3D-Printed Orion Engine Component

NASA - Breaking News - Tue, 05/07/2024 - 12:05pm

When the Orion spacecraft carries the first Artemis crews to the Moon and back, it will rely on the European Service Module contributed by ESA (European Space Agency) to make the journey. The service module provides electrical power generation, propulsion, temperature control, and consumable storage for Orion, up to the moment it separates from the crew module prior to re-entry into Earth’s atmosphere.

For the first six Artemis missions – Artemis I through Artemis VI – NASA and ESA will use a refurbished Orbital Maneuvering System (OMS) engine from the space shuttle program as the European Service Module’s main engine. Beyond Artemis VI, NASA will need a new engine to support Orion.

That need will be met by the Orion Main Engine (OME) in development with Aerojet Rocketdyne (now L3 Harris), but before the OME can fly, all of its components must be thoroughly tested.

Enter the Propulsion Test Office at NASA’s White Sands Test Facility. From November 2023 to January 2024, this team led rigorous testing of a critical OME component: the injector that delivers propellants to power the engine and provides the thrust necessary to return Orion home from the Moon.

Orion Main Engine injector test team members at NASA’s White Sands Test Facility.NASA/Reed Elliott

The tests were performed on Test Stand 301A in White Sands’ Propulsion 300 Area. The injector was mounted to a test engine that fired multiple times for three seconds each, for a total of 21 tests. With each test, the White Sands team sought to demonstrate the OME injector’s ability to maintain consistent and controlled combustion and to return to normal operations if the combustion process was artificially perturbed.

Many White Sands team members were involved in this effort. James Hess, project manager and operations director, ensured the tests were completed safely and successfully by overseeing operations, and confirming test requirements were met. James Mahoney handled the test schedule and budget as project lead, while Jordan Aday directed operations and the actual tests. Other key roles included lead electrical engineer Sal Muniz, and instrumentation engineer Jesus Lujan-Martino. Aerojet Rocketdyne’s Shaun DeSouza served as test article director, working to ensure the injector operated as expected and that test condition requirements were met. Additional support was provided by OME Program team members at NASA’s Johnson Space Center and Glenn Research Center.

Orion Main Engine injector test engine firing.NASA

The results confirmed that the OME injector could maintain stable combustion, and the team determined the tests were successful. A unique aspect of the OME injector is that it was fabricated through an additive manufacturing process called selective laser machining – basically 3D printing with metallic powders instead of plastics. Demonstrating the effectiveness of 3D printed components could help NASA and its partners lower costs and increase efficiencies in development processes.

The injector design will now be incorporated into a full OME that will be tested as a full engine assembly at White Sands once it is ready.  

Categories: NASA

Ken Carpenter: Ensuring Top-Tier Science from Moon to Stars

NASA - Breaking News - Tue, 05/07/2024 - 11:43am

Today, Ken Carpenter is a scientist for NASA’s Hubble and Roman space telescopes, but in 1967 he was just a teenager at his local library out to fact-check a “Star Trek” episode.

Name: Kenneth G. Carpenter
Title: Operations Project Scientist for Hubble Space Telescope; Ground System Scientist for Roman Space Telescope; and a NASA Innovative Advanced Concepts (NIAC) Fellow and Principal Investigator for the Artemis-Enabled Stellar Imager (AeSI) NIAC Study.
Formal Job Classification: Astrophysicist
Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Directorate (Code 667)

Ken Carpenter is an operations project scientist for Hubble Space Telescope; ground system scientist for Roman Space Telescope; and a NASA innovative advanced concepts (NIAC) fellow and principal investigator for the Artemis-Enabled Stellar Imager (AeSI) NIAC Study.NASA/Bill Hrybyk

What do you do and what is most interesting about your role here at Goddard?

As the operations project scientist for Hubble Space Telescope, I represent the astronomical community to the project management and help ensure that Hubble produces the best quality science possible consistent with other project requirements like cost and schedule.

I am also the ground system scientist for Roman Space Telescope, a role that entails overseeing the design and operation of the ground system and advising management to ensure we maximize the science.

As a NIAC fellow and principal investigator for the AeSI mission concept study, I am studying the possibility of building a large baseline UV-optical interferometer on the lunar surface in conjunction with the Artemis campaign.

What is your educational background?

In 1977, I graduated from Wesleyan University with a bachelor’s and master’s in astronomy. In 1983, I graduated from The Ohio State University with a Ph.D. in astronomy. That same year, I took a post-doctoral research position at the University of Colorado in Boulder.

What brought you to Goddard?

While at the University of Colorado, my mentor told me about an opportunity at Ball Aerospace to help put a new detector into one of Hubble’s instruments. I helped calibrate that detector for the Goddard High Resolution Spectrograph (GHRS) while in my research position. As a result, the University of Colorado offered me a new position at Goddard to help coordinate the development of the GHRS ground system.

Doing the extra work for Ball Aerospace while with the University of Colorado was an unusual path to take, but it led to my job at Goddard. The lesson here is do not be afraid of an unusual career path because a nontraditional path may lead to a great opportunity.

What is the most interesting thing you do as the operations project scientist for Hubble?

I get to be deeply involved in one of NASA’s flagship missions and help astronomers all over the world explore the leading edge of astronomy. I agreed to take this position for only three years in the early ’90s, but it has remained so exciting, challenging, and rewarding that I am still involved today. Working for Hubble has been an amazing experience and a constant delight. Being involved with enabling Hubble’s ground-breaking science and astronomy has been extraordinarily rewarding for me for more than three decades now.

“One of the most fun parts of my job is talking to people. I enjoy enabling Goddard’s world class science, but I really enjoy seeing a kid’s eyes light up with excitement when explaining some of our cool discoveries,” said Ken (right), shown here at an AwesomeCon booth with Christina Mitchell (left) and Faith Vowler (middle).Courtesy of Ken Carpenter

How did your work on Hubble lead to your involvement in bringing the Roman project forward?

My experience in Hubble’s operations and ground systems led me to get involved with the same for Roman at a very early stage. I was involved in developing the early concepts for Roman and helping it get selected as an official NASA mission. I was in the right place at the right time again. This is another example of taking advantage of an opportunity as it presented itself.

What is your role as the NIAC fellow and principal investigator for the AeSI mission concept study?

I was recently selected as a NIAC fellow to study the possibility of building an interferometer on the surface of the Moon in conjunction with the Artemis campaign. An interferometer is an array of telescope mirrors that work together. A large baseline means that the outer diameter of this array will be about one-third of a mile. We are investigating whether the Artemis infrastructure makes building this on the Moon competitive with, or better than, building such a telescope in free-space.

NIAC fellows are selected to lead visionary studies for technically challenging mission concepts and technologies. We are selected under a NASA-wide program that offers three levels of study. My 2024 Phase One NIAC study is one of only 13 accepted in 2024. We proposed our study four years in a row before we were finally awarded the study this year, reinforcing the lesson that persistence and patience are often needed to achieve great things.

You do a lot of outreach. What is your message?

I do a lot of public outreach, in particular for Hubble, Roman and our new NIAC program. This includes talks and exhibit tables at middle schools, high schools, astronomy societies, and large sci-fi and pop culture conventions, including DragonCon and AwesomeCon.

I try to convey to the audience the excitement of the science results from our various missions and about NASA’s plans for future missions. At schools, I often talk about paths to working at NASA and the job of working here. I point out that NASA needs people with a wide variety of skills, not just scientists and engineers. I usually conclude with an informal question-and-answer period.

One the most fun parts of my job is talking to people. I enjoy enabling Goddard’s world class science, but I really enjoy seeing a kid’s eyes light up with excitement when explaining some of our cool discoveries.

“Working for Hubble has been an amazing experience and a constant delight,” said Ken, shown here with the Hubble outreach team. “Being involved with enabling Hubble’s ground-breaking science and astronomy has been extraordinarily rewarding for me for more than three decades now.”NASA/Robert Andreoli

What is your message as a mentor?

I have mentored people from high school through post-doctoral fellows. I try to give them the benefit of some of the lessons I have learned. I tell them not to be afraid to take nontraditional paths and to take a risk if you see something interesting because it might lead to something even better. I also tell them to look for and take advantage of such opportunities and I try to give them opportunities to be part of investigations, to help write papers and to feel involved so that they experience the excitement of a Goddard and technical career in general.

Most of the people I have mentored have gone on to very exciting careers in astronomy and related fields. Perhaps the most unexpected and exciting result of mentoring for me was a Harvard undergraduate studying astronomy who turned into a deep-sea explorer, a scientist of a different sort.  

What are your hobbies and interests?

I am an amateur photographer of landscapes and also of my everyday experiences and travels. I am also very enthusiastic about all things related to Disney and Star Trek. My Disney fandom includes loving the films and also traveling to their theme parks as often as life permits. If I was not an astronomer, I like to think I might have become a Disney Imagineer, someone who conceives of and designs their attractions and experiences.

As a Trekkie, I attend sci-fi and pop culture conventions, and now I give science talks at them too. I know the science adviser to the modern Star Trek series, and we talk constantly about the synergies between Trek and NASA. I have met over the years a fair number of the stars from all of the series. After 50 years of fandom, this is very neat. Star Trek has always inspired me!

“Growing up, I read a lot of science fiction, said Ken, shown here with actor Nichelle Nichols, who played Lt. Uhura on the original Star Trek series. “The original Star Trek series greatly inspired me,” he said.Courtesy of Ken Carpenter 'Star Trek' Adviser Discusses Sci-Fi's Real Science at NASA Goddard

I also enjoy exploring the past through attending Renaissance festivals. I am lucky that the Maryland Renaissance Festival is one of the top festivals in the county and easy for me to access!

What inspired you to become an astronomer?

Growing up, I read a lot of science fiction. The original Star Trek series greatly inspired me. I also visited the 1964-1965 New York World’s Fair, which showed us the wonderful possibilities for the future that science and technology might create. This was before the internet and was a place where one could see one of the first color TVs, a very early edition Frisbee and be shown many other wonderful things that science and technology would contribute to our exciting future. They even had a Space Park with a rocket garden and memorabilia of the early space programs.

Walt Disney built some of the most popular attractions at the fair and brought them back to his theme parks after the fair ended. This included “It’s a Small World”, the first animatronic Abraham Lincoln, the Ford exhibit that featured cars going through ancient landscapes and seeing “live” animatronic dinosaurs, and the Carousel of Progress, which has the audience revolving around a central area with multiple stages to show how technology supports improvements in everyday living, as houses went from having ice boxes to talking refrigerators.

What got me into the library to pick up an astronomy book for the first time was a particular Star Trek episode during their second season called “Who Mourns for Adonais.” It included a reference to a star named Beta Gem (Pollux) and I wanted to see if it was a real star. In the process of going to the library and confirming the name was real, I also picked up an astronomy book, which hooked me immediately. From that point on, I wanted to be an astronomer. I was around 13. Fifty-plus years later, I actually met the actor, Mike Forest, who guest starred in that episode as the Greek god Apollo, and my mind was appropriately blown!

Who would you like to thank?

I would like to thank my wife Susan and our children David and Bryce for their support over the years including tolerating my long hours at work and their unwavering support as I pursued my dreams in exploring the universe and working at NASA. I could not have done all this amazing work without their love and support.

Beyond the immediate family, there are of course many, many others who have helped steer me through this amazing career and all have my thanks even if I can’t include them here. In particular I want to note folks who helped me so much during my “early career” stages, from Bob Wing at The Ohio State University, Jeff Linsky at the University of Colorado, and Sally Heap and Steve Maran at NASA Goddard. All were instrumental in ensuring my successful entry into the NASA universe.

What are your two favorite phrases that you live by?

“Dreamers need to stick together.” This is from the 2015 Disney movie “Tomorrowland,” one of my favorite movies of all time.

I would also add “IDIC,” for “Infinite Diversity in Infinite Combinations,” which is a Star Trek phrase expressing its core philosophy that people of all different cultures can work together in peace to create a wonderful and accepting future.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated May 07, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms Explore More 6 min read Lynn Bassford Prioritizes Learning as a Hubble Mission Manager

Lynn Bassford levels decades of experience and a desire for self-growth as she helps lead…

Article 7 months ago
5 min read Melissa Harris: Propelling Space Telescopes Toward Success

Melissa Harris is an engineer working on the propulsion system for the Nancy Grace Roman…

Article 11 months ago
6 min read Glenn Bazemore: Professional Problem-Solver

Glenn Bazemore is a mechanical engineer working on the Nancy Grace Roman Space Telescope Team.…

Article 9 months ago
Categories: NASA

Breaking the Scaling Limits: New Ultralow-noise Superconducting Camera for Exoplanet Searches

NASA - Breaking News - Tue, 05/07/2024 - 10:48am
6 Min Read Breaking the Scaling Limits: New Ultralow-noise Superconducting Camera for Exoplanet Searches

When imaging faint objects such as distant stars or exoplanets, capturing every last bit of light is crucial to get the most out of a scientific mission. These cameras must be extremely low-noise, and be able to detect the smallest quantities of light—single photons.  Superconducting cameras excel in both of these criteria, but have historically not been widely applicable because their camera sizes have been small, rarely exceeding a few thousand pixels, which limits their ability to capture high-resolution images.  However, a team of researchers has recently shattered that barrier, developing a superconducting camera with 400,000 pixels, which could be used to detect faint astronomical signals in a wide range of wavelengths—from the ultraviolet to the infrared.

The 400,000 pixel superconducting camera based on superconducting-nanowire single photon detectors Credit: Adam McCaughan/NIST

While plenty of other camera technologies exist, cameras using superconducting detectors are very appealing for use in astronomical missions due to their extremely low-noise operation.  When imaging faint sources, it is crucial that a camera report the quantity of received light faithfully, and not skew the amount of light received or inject its own false signals.   Superconducting detectors are more than capable of this task, owing to their low-temperature operation and unique composition. As described by project lead Dr. Adam McCaughan, “with these detectors you could take data all day long, capturing billions of photons, and fewer than ten of those photons would be the result of noise.”

NIST team members Bakhrom Oripov (left) and Ryan Morgenstern (right) mount the superconducting camera to a specialized cryogenic stage Credit: Adam McCaughan/NIST

But while superconducting detectors hold great promise for astronomical applications, their usage in that field has been stymied by small camera sizes that permit relatively few pixels.  Because these detectors are so sensitive, it is difficult to pack a lot of them into a small area without them interfering with each other.  In addition, since these detectors need to be kept cold in a cryogenic refrigerator, only a handful of wires can be used to carry the signals from the camera to the warmer readout electronics.

To overcome these limitations, researchers at the National Institute of Standards and Technology (NIST), the NASA Jet Propulsion Laboratory (JPL), and the University of Colorado Boulder applied time-domain multiplexing technology to the interrogation of two-dimensional superconducting-nanowire single photon detector (SNSPD) arrays. The individual SNSPD nanowires are arranged as intersecting rows and columns. When a photon arrives, the times it takes to trigger a row detector and a column detector are measured to ascertain which pixel sent the signal. This method allows the camera to efficiently encode its many rows and columns onto just a few readout wires instead of thousands of wires. 

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

This animation depicts the newly developed readout system that made it possible for researchers to build a 400,000 single-wire superconducting camera, the highest resolution camera of its type.Credit: S. Kelley/NIST

SNSPDs are one type of detector in a collection of many such superconducting detector technologies, including microwave kinetic inductance detectors (MKID), transition-edge sensors (TES), and quantum capacitance detectors (QCD).  SNSPDs are unique in that they are able to operate much warmer than the millikelvin temperatures required by those other technologies, and can have extremely good timing resolution, although they are not able to resolve the color of individual photons.  SNSPDs have been collaboratively researched by NIST, JPL, and others in the community for almost two decades, and this most recent work was only possible thanks to the advances generated by the wider superconducting detector community.

Once the team implemented this readout architecture, they found it immediately became straightforward to construct superconducting cameras with extremely large numbers of pixels. As described by technical lead Dr. Bakhrom Oripov, “The big advance here is that the detectors are truly independent, so if you want a camera with more pixels, you just add more detectors to the chip.” The researchers note that while their recent project was a 400,000 pixel device, they also have an upcoming demonstration of a device with over a million pixels, and have not found an upper limit yet. 

One of the most exciting things that the researchers think their camera could be useful for is a search for Earth-like planets outside of our solar system. To detect these planets successfully, future space telescopes will observe distant stars and look for tiny portions of reflected or emitted light coming from orbiting planets. Detecting and analyzing these signals is extremely challenging and requires very long exposures, which means that every photon collected by the telescope is very valuable. A reliable, low-noise camera will be critical to detect these incredibly small quantities of light.

JPL team members with two prototype cryocoolers that will be used to test the superconducting camera at far-ultraviolet wavelengths. From left to right, Emanuel Knehr, Boris Korzh, Jason Allmaras, and Andrew Beyer Credit: Boris Korzh/NASA JPL

SNSPD cameras can also be used on Earth to detect optical communication signals from missions in deep space. In fact, NASA is currently demonstrating this capability via the Deep Space Optical Communications (DSOC) project, which is the first demonstration of free-space optical communication from interplanetary space. DSOC is sending data from a spacecraft called Psyche—which was launched on October 13 and is on its way to the Psyche asteroid—to an SNSPD-based ground terminal at Palomar Observatory. Optical links can transmit data at a much higher rate than radio frequency links from interplanetary distances. The excellent timing resolution of the camera developed for the ground station receiving Psyche data allows it to decode optical data from the spacecraft, which enables much more data to be received in a given time than if radio signals were employed.

These sensors will also be useful for many applications on Earth. Because the operating wavelength of this camera is very flexible, it could be optimized for applications in biomedical imaging to detect faint signals from cells and molecules, which were previously not detectable. Dr. McCaughan noted, “We would love to get these cameras in the hands of neuroscientists. This technology could provide them with a new tool to study our brains, in a completely non-intrusive way.”

Finally, the rapidly growing field of quantum technology, which promises to change the way we secure communications and transactions as well as the way we simulate and optimize complex processes, also stands to gain from this exciting technology. A single photon can be used to transfer or compute a single bit of quantum information. Many companies and governments are currently trying to scale up quantum computers and communication links and access to a single-photon camera that is so easily scalable, could overcome one of the major hurdles to unlocking the full potential of quantum technologies.

According to the research team, the next steps will be to take this initial demonstration and optimize it for space applications.  “Right now, we have a proof-of-concept demonstration,” says co-project lead Dr. Boris Korzh, “but we’ll need to optimize it to show its full potential.” The research team is currently planning ultra-high-efficiency camera demonstrations that will validate the utility of this new technology in both the ultraviolet and the infrared.

PROJECT LEADS

Dr. Adam McCaughan (NIST) and Dr. Boris Korzh (JPL)

SPONSORING ORGANIZATIONS

Astrophysics Research and Analysis (APRA) Program, DARPA Invisible Headlight Program

Share Details Last Updated May 07, 2024 Related Terms Explore More 5 min read New NASA Black Hole Visualization Takes Viewers Beyond the Brink Article 22 hours ago 2 min read Hubble Views a Galaxy with a Voracious Black Hole Article 1 day ago 2 min read Hubble Hunts Visible Light Sources of X-Rays Article 4 days ago
Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 05/06/2024 - 8:00pm

The star system GK Per is known to be associated


Categories: Astronomy, NASA

Astronaut Suni Williams Prepares for Crew Flight Test

NASA Image of the Day - Mon, 05/06/2024 - 3:21pm
During a mission dress rehearsal, NASA’s Boeing Crew Flight Test astronaut Suni Williams flashes a thumbs up in her Boeing spacesuit inside the crew suit-up room inside the Neil A. Armstrong Operations and Checkout Building at the agency’s Kennedy Space Center in Florida on Friday, April 26, 2024. As part of the agency’s Commercial Crew Program, Williams and fellow NASA astronaut Butch Wilmore are the first to launch to the International Space Station aboard Boeing’s Starliner spacecraft. Liftoff atop a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at nearby Cape Canaveral Space Force Station is scheduled for 10:34 p.m. ET Monday, May 6.
Categories: Astronomy, NASA

Astronaut Suni Williams Prepares for Crew Flight Test

NASA - Breaking News - Mon, 05/06/2024 - 3:18pm
NASA/Frank Micheaux

NASA’s Boeing Crew Flight Test astronaut Suni Williams gives a thumbs up during a mission dress rehearsal on Friday, April 26, 2024, at the agency’s Kennedy Space Center in Florida. Williams was selected as an astronaut by NASA in 1998 and has been aboard the International Space Station twice. She is set to return to the space station for a third time, traveling aboard Boeing’s Starliner spacecraft as pilot. NASA astronaut Butch Wilmore will also be aboard as commander. Starliner is scheduled to liftoff atop a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at nearby Cape Canaveral Space Force Station at 10:34 p.m. ET Monday, May 6. NASA’s Boeing Crew Flight Test is one of the final flight tests for Starliner on its road to certification.

Visit the Asian American, Native Hawaiian, and Pacific Islander Heritage Month gallery.

Image Credit: NASA/Frank Micheaux

Categories: NASA

New NASA Black Hole Visualization Takes Viewers Beyond the Brink

NASA - Breaking News - Mon, 05/06/2024 - 1:00pm

5 min read

New NASA Black Hole Visualization Takes Viewers Beyond the Brink

Ever wonder what happens when you fall into a black hole? Now, thanks to a new, immersive visualization produced on a NASA supercomputer, viewers can plunge into the event horizon, a black hole’s point of no return.

In this visualization of a flight toward a supermassive black hole, labels highlight many of the fascinating features produced by the effects of general relativity along the way. Produced on a NASA supercomputer, the simulation tracks a camera as it approaches, briefly orbits, and then crosses the event horizon — the point of no return — of a monster black hole much like the one at the center of our galaxy. Credit: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell
View the plunge in 360 video on YouTube

“People often ask about this, and simulating these difficult-to-imagine processes helps me connect the mathematics of relativity to actual consequences in the real universe,” said Jeremy Schnittman, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who created the visualizations. “So I simulated two different scenarios, one where a camera — a stand-in for a daring astronaut — just misses the event horizon and slingshots back out, and one where it crosses the boundary, sealing its fate.”

The visualizations are available in multiple forms. Explainer videos act as sightseeing guides, illuminating the bizarre effects of Einstein’s general theory of relativity. Versions rendered as 360-degree videos let viewers look all around during the trip, while others play as flat all-sky maps.

To create the visualizations, Schnittman teamed up with fellow Goddard scientist Brian Powell and used the Discover supercomputer at the NASA Center for Climate Simulation. The project generated about 10 terabytes of data — equivalent to roughly half of the estimated text content in the Library of Congress — and took about 5 days running on just 0.3% of Discover’s 129,000 processors. The same feat would take more than a decade on a typical laptop.

The destination is a supermassive black hole with 4.3 million times the mass of our Sun, equivalent to the monster located at the center of our Milky Way galaxy.

“If you have the choice, you want to fall into a supermassive black hole,” Schnittman explained. “Stellar-mass black holes, which contain up to about 30 solar masses,  possess much smaller event horizons and stronger tidal forces, which can rip apart approaching objects before they get to the horizon.”

This occurs because the gravitational pull on the end of an object nearer the black hole is much stronger than that on the other end. Infalling objects stretch out like noodles, a process astrophysicists call spaghettification.

The simulated black hole’s event horizon spans about 16 million miles (25 million kilometers), or about 17% of the distance from Earth to the Sun. A flat, swirling cloud of hot, glowing gas called an accretion disk surrounds it and serves as a visual reference during the fall. So do glowing structures called photon rings, which form closer to the black hole from light that has orbited it one or more times. A backdrop of the starry sky as seen from Earth completes the scene.

Tour an alternative visualization that tracks a camera as it approaches, falls toward, briefly orbits, and escapes a supermassive black hole. This immersive 360-degree version allows viewers to look around during the flight. Credit: NASA’s Goddard Space Flight Center/J. Schnittman and B. Powell
View the flyby explainer on YouTube

As the camera approaches the black hole, reaching speeds ever closer to that of light itself, the glow from the accretion disk and background stars becomes amplified in much the same way as the sound of an oncoming racecar rises in pitch. Their light appears brighter and whiter when looking into the direction of travel.

The movies begin with the camera located nearly 400 million miles (640 million kilometers) away, with the black hole quickly filling the view. Along the way, the black hole’s disk, photon rings, and the night sky become increasingly distorted — and even form multiple images as their light traverses the increasingly warped space-time.

In real time, the camera takes about 3 hours to fall to the event horizon, executing almost two complete 30-minute orbits along the way. But to anyone observing from afar, it would never quite get there. As space-time becomes ever more distorted closer to the horizon, the image of the camera would slow and then seem to freeze just shy of it. This is why astronomers originally referred to black holes as “frozen stars.”

At the event horizon, even space-time itself flows inward at the speed of light, the cosmic speed limit. Once inside it, both the camera and the space-time in which it’s moving rush toward the black hole’s center — a one-dimensional point called a singularity, where the laws of physics as we know them cease to operate.

“Once the camera crosses the horizon, its destruction by spaghettification is just 12.8 seconds away,” Schnittman said. From there, it’s only 79,500 miles (128,000 kilometers) to the singularity. This final leg of the voyage is over in the blink of an eye.

In the alternative scenario, the camera orbits close to the event horizon but it never crosses over and escapes to safety. If an astronaut flew a spacecraft on this 6-hour round trip while her colleagues on a mothership remained far from the black hole, she’d return 36 minutes younger than her colleagues. That’s because time passes more slowly near a strong gravitational source and when moving near the speed of light.

“This situation can be even more extreme,” Schnittman noted. “If the black hole were rapidly rotating, like the one shown in the 2014 movie ‘Interstellar,’ she would return many years younger than her shipmates.”


Download high-resolution video and images from NASA’s Scientific Visualization Studio

By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

May 06, 2024

Editor Francis Reddy Location NASA Goddard Space Flight Center

Related Terms Explore More

3 min read NASA Visualization Shows a Black Hole’s Warped World

This new visualization of a black hole illustrates how its gravity distorts our view, warping…



Article


5 years ago

4 min read New NASA Visualization Probes the Light-bending Dance of Binary Black Holes

A pair of orbiting black holes millions of times the Sun’s mass perform a hypnotic…



Article


3 years ago

4 min read NASA Animation Sizes Up the Universe’s Biggest Black Holes

Editor’s Note May 3, 2023: The video in the feature was updated to make a…



Article


1 year ago

4 min read NASA Visualization Rounds Up the Best-Known Black Hole Systems

Nearby black holes and their stellar companions form an astrophysical rogues’ gallery in this new…



Article


2 years ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

A Different Perspective – Remembering James Dean, Founder of the NASA Art Program

NASA - Breaking News - Mon, 05/06/2024 - 12:08pm
Artist James Dean prepares sketches of the space shuttle Columbia as it sits on Pad 39 at NASA’s Kennedy Space Center on April 9, 1981, waiting for its first historic flight (STS-1).NASA

In March 1962, NASA Administrator James Webb addressed a two-paragraph memorandum to NASA Public Affairs Director Hiden T. Cox about the possibility of bringing in artists to highlight the agency’s achievements in a new way. In it, he wrote, “We should consider in a deliberate way just what NASA should do in the field of fine arts to commemorate the … historic events” of America’s initial steps into space.  

Shortly thereafter, NASA employee and artist James Dean was tasked with implementing NASA’s brand-new art program. Working alongside National Art Gallery Curator of Painting H. Lester Cooke, he created a framework to give artists unparalleled access to NASA missions at every step along the way, such as suit-up, launch and landing activities, and meetings with scientists and astronauts.

“It’s amazing just how good a sketch pad is at getting you into places,” Dean said in a 2008 oral history interview. “People shy away from cameras, but sketch pads, pencils, paints, you know … a lot of doors got opened that you could never open by making an official request.”

Walt Owen, “Apollo 15 NASA Artist at Work, VAB,” 1971, watercolor on paper. The painting depicts an artist seated on the ground inside the Vehicle Assembly Building (VAB). Walt Owen / Courtesy of the Smithsonian National Air and Space Museum

The NASA Art Program selected an initial group of eight artists – Peter Hurd, George Weymouth, Paul Calle, Robert McCall, Robert Shore, Lamar Dodd, John McCoy, and Mitchell Jamieson – in May 1963 to capture their interpretations of the final flight of the Mercury program, Faith 7. Seven of these men spent their time exploring Cape Canaveral and covering prelaunch activities; Jamieson covered splashdown and landing by being assigned to one of the recovery ships.

Though the grants and honorariums associated with being a NASA Art Program participant were always nominal – $800 in the 1960s and up to $3,000 in the early 2000s – many other well-known artists continued to work with the program through the decades that followed, including Norman Rockwell, Robert Rauschenberg, Andy Warhol, Annie Leibowitz, and Chakaia Booker.

“It wasn’t money they were after,” Dean noted. “They were interested in the experience and being invited back into where history was being made. I mean, artists have been with explorers … [since] the early days of exploration in this country.”

James Browning Wyeth, “Support,” 1965, watercolor on paper. The painting depicts the Gemini IV launch from the viewpoint of a neighboring gantry to the Gemini Launch Complex 19.James Browning Wyeth / Courtesy of the Smithsonian National Air and Space Museum

Dean also recognized the importance of having a diverse range of artists present, even if they were all ostensibly there to capture the same historical event. “When you have six artists sitting together painting the same thing,” he explained, “each painting is different. And that’s because … they’re seeing all the same thing, but the image goes through their imagination too and all their experience.”

While there were some initial concerns about the NASA engineers and scientists accepting the artists as a new, prolonged presence in their midst, Dean found that once they “let the artist in and see what they were doing, they really hit it off because the engineers and the scientists and the artists really use a lot of imagination. So they were really connecting on a certain level.” He also observed a unique symbiosis occurring between artist and worker: “When an artist … turns your workplace into a work of art, you know, it validates everything you’ve been doing. It is a real motivating factor to see something like that.”

Artist James Dean, using a makeshift easel for support, prepares a preliminary study of the space shuttle Columbia on the pad at NASA’s Kennedy Space Center on June 27, 1982, as the spacecraft is prepared for its fourth flight (STS-4).NASA

Dean served as the director of the NASA Art Program from 1962 to 1974, before leaving to become the first art curator for the Smithsonian’s National Air and Space Museum from 1974 until his retirement in 1980. He passed away in Washington on March 22, 2024, at the age of 92. But his legacy lives on in the NASA Art Program collection, which currently has some 3,000 works divided between the National Air and Space Museum and NASA. Today, the program is focused on STEM outreach initiatives to inspire youth through creative activity.

To learn more, check out selected works from the NASA Art Program on the NASA History Flickr page and the National Air and Space Museum page. 

Categories: NASA

Tech Today: NASA’s Ion Thruster Knowhow Keeps Satellites Flying

NASA - Breaking News - Mon, 05/06/2024 - 12:01pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This Hall-effect thruster, shown being tested at Glenn Research Center, turns electricity and inert gas into force that could propel a spacecraft. Orbion Space Technology was founded to bring the high efficiency of these thrusters to small commercial satellites, and the company sought the center’s help to make that a reality.Credit: NASA

In low Earth orbit, satellites face a constant challenge – a tiny amount of atmospheric drag that, over time, causes them to slow down and decay their orbit. To combat this, spacecraft rely on in-space thrusters to adjust positioning and boost orbits. However, most of these thrusters use heavy, expensive chemical propellants. This is where the game-changing ion thrusters come in, offering a more efficient and cost-effective solution for satellite operations.

Orbion Space Technology, based in Houghton, Michigan, was established in 2016. Recognizing a market need, the company set out to find innovative ways to either extend the lifespan of satellites in orbit or increase their payload capacity. This ambitious goal necessitated the development of a thruster that could operate efficiently with minimal fuel consumption, leading to the creation of the company’s Aurora thruster.

Hall-effect thrusters, an advanced ion propulsion technology, use electricity rather than chemical reactions to propel spacecraft. Orbion’s founders saw the technology grow from an experimental concept to being regularly used on missions across the solar system. Still, the company had to turn to the experts to make these thrusters viable for satellite operators.

Orbion’s Aurora thrusters are small and efficient yet powerful enough to maintain the orbits of small satellites for several years.Credit: Orbion Space Technology Inc.

NASA’s Glenn Research Center in Cleveland leads the development of ion thrusters for the agency, designing and evaluating thrusters for missions like Dawn and DART and the agency’s Gateway lunar space station. Orbion entered into a Data Usage Agreement with NASA Glenn to receive detailed information from the development of these engines and a non-exclusive evaluation license. One of the reasons Orbion turned to NASA was its advancements in materials research for ion thrusters and the Glenn-developed cathode heater, which improves electrical efficiency and operating life. 

This work resulted in Orbion’s Aurora thrusters being just as capable as those that NASA builds for its deep space science and exploration missions. Orbion has since sold several Aurora thrusters to government and private sector companies, including a recent contract with a large commercial satellite operator for its new constellation of Earth-observing spacecraft. 

Read More Share Details Last Updated May 06, 2024 Related Terms Explore More 2 min read Tech Today: Stay Safe with Battery Testing for Space

NASA battery safety exams influence commercial product testing

Article 7 days ago
3 min read NASA Uses Small Engine to Enhance Sustainable Jet Research Article 1 week ago 1 min read NASA Glenn Interactive Exhibit Earns Gold Article 2 weeks ago Keep Exploring Discover Related Topics

Technology Transfer & Spinoffs

Solar Electric Propulsion

Missions

Glenn Research Center

Categories: NASA

Sols 4175-4177: Don’t Blink We’re Taking a Picture

NASA - Breaking News - Mon, 05/06/2024 - 10:53am

3 min read

Sols 4175-4177: Don’t Blink We’re Taking a Picture This image shows our previous workspace block and rover wheel tracks from Sol 4171 taken by the Left Navigation Camera onboard NASA’s Mars rover Curiosity. NASA/JPL-Caltech

Earth planning date: Friday, May 3, 2024

Curiosity loves to drive so it’s pretty rare we stay at a location longer than one planning cycle without the intention of drilling. But since we found ourselves at this unique and beautiful rubbly ridge with dark-toned clasts all around, the science team decided to skip driving last plan and stay through most of the weekend in favor of more contact science. My job this week was operating the Mastcams, and we decided to take full advantage of this opportunity! Why not take an afternoon 360-degree panorama while we’re here? It’s understandably hard to argue against a full panorama, so we went for it and planned 331 Mastcam Left images that should cover most of the terrain around us (including a custom arm pose to get the ridge in better view). Since our left filter wheel got stuck last fall, occluding over half of our lens, we’ve had to subframe our images quite a bit to avoid any filter wheel hardware showing up and thus — our Mastcam Left frame size covers less than half what it use to. It’s extremely lucky we’re still able to use the camera at all, and we’re very happy to keep planning 360 panos after all these years even if it takes about 2.5x more images to acquire.

Now for the reason we stayed: a full evening of contact science on the first sol! APXS and MAHLI are planning to investigate a light-toned, layered but somehow still crunchy, rock named “Liberty Cap” and another similar rock named “Wilma Lake.” Liberty Cap imaging will also include a different type of MAHLI stereo where the turret rotates instead of moves laterally, called “rotational” stereo (or: “Herkenhoff” stereo after Ken Herkenhoff, a long-time MAHLI Co-Investigator among many other titles). Without any APXS support, MAHLI will also take a look at a pointy, dark-toned target named “Lookout Peak.” I sit right next to the MAHLI operations team and was trying my best to keep up with all they have going on today.

On the second sol, we drive! To be honest, there’s a ton more we planned today (including mid-drive and post-drive Mastcam imaging!) but this blog could go on and on with how packed this plan is. It’s always a little nerve-wracking sending a plan like this up to Mars before checking out for the weekend, but I’ll try my best and come back fresh for more Mastcam imaging on Monday.

Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems

Share

Details

Last Updated

May 06, 2024

Related Terms Explore More

3 min read Sols 4173-4174: Reflections

Article


4 days ago

4 min read Sols 4168-4170 Reaching the “Pinnacle” of Gediz Vallis Ridge (Pinnacle Ridge)

Article


5 days ago

3 min read Sols 4171-4172: Scoot Over!

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

NASA Invites Media to Attend Louisiana Space Day 2024

NASA - Breaking News - Mon, 05/06/2024 - 10:50am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Michoud Assembly Facility in New Orleans, Louisiana, is one of the world’s largest manufacturing plants, with 43 acres under one roof and a port with deep-water access, permitting transportation of large space systems and hardware NASA

NASA’s Michoud Assembly Facility in New Orleans, several aerospace companies, and GNO Inc. will host Louisiana Space Day 2024 at the Louisiana State Capitol in Baton Rouge from 9 a.m. to 3 p.m. CDT on Wednesday, May 8.

Media are invited to attend and should contact Craig Betbeze at craig.c.betbeze@nasa.gov or 504-419-5333 by 2 p.m. CDT on Tuesday, May 7.

Area middle-school, high-school, and college students will participate in STEM activities, chat with NASA astronaut Josh Cassada, and hear from NASA leadership during an Artemis Generation panel discussion. The event also will include a reading of a Space Day resolution by Louisiana legislators with NASA Marshall Space Flight Center Director Joseph Pelfrey, NASA Michoud Director Hansel Gill, and astronaut Cassada, highlighting Louisiana’s contributions to space exploration.

NASA Michoud, Boeing, Lockheed Martin, United Launch Alliance (ULA), Blue Origin, American Institute of Aeronautics and Astronautics, University of Louisiana at Lafayette, LA STEM, partners for Stennis and Michoud, and selected Louisiana school robotics teams are among the exhibitors for Space Day 2024. GNO Inc. coordinated efforts with local schools to bring middle and high-school school students to participate.

Media opportunities for the day include:

9 a.m. to 3 p.m. – STEM activities

Location: Capitol Rotunda

10 a.m. – Chat with NASA astronaut Josh Cassada, NASA Marshall Center Director Joseph Pelfrey, NASA Michoud Assembly Director Hansel Gill, and high school students

Location: Louisiana State Library

TBD – Resolution readings on the House and Senate Floors

11 a.m. – Artemis Generation Panel with college students. Panel participants are Chrystal Morgan, Boeing, as moderator, NASA Marshall Director Joseph Pelfrey, and NASA Michoud Assembly Director Hansel Gill.

Location: Louisiana State Capitol

TBD – Louisiana Space Day 2024 Resolution reading by Louisiana Legislators with NASA Marshall Space Flight Center Director Joseph Pelfrey and NASA Michoud Assembly Director Hansel Gill.

About the NASA Michoud Assembly Facility

For more than half a century, NASA’s Michoud Assembly Facility in New Orleans has been “America’s Rocket Factory,” the nation’s premiere site for manufacturing and assembly of large-scale space structures and systems. Michoud is a NASA-owned facility, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

To learn more about programs and activities at NASA Michoud, visit:

https://www.nasa.gov/michoud-assembly-facility/

Craig Betbeze
Michoud Assembly Facility, New Orleans
504-419-5333
craig.c.betbeze@nasa.gov

Share Details Last Updated May 06, 2024 EditorBeth RidgewayLocationMichoud Assembly Facility Related Terms Explore More 4 min read Hi-C Rocket Experiment Achieves Never-Before-Seen Look at Solar Flares Article 5 days ago 23 min read The Marshall Star for May 1, 2024 Article 5 days ago 4 min read NASA Marshall Prepares for Strategic Facilities Updates  Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Hubble Views a Galaxy with a Voracious Black Hole

NASA - Breaking News - Mon, 05/06/2024 - 8:31am

2 min read

Hubble Views a Galaxy with a Voracious Black Hole This NASA Hubble Space Telescope image features the spiral galaxy NGC 4951, located roughly 50 million light-years away from Earth.

Bright, starry spiral arms surround an active galactic center in this new NASA Hubble Space Telescope image of the galaxy NGC 4951.

Located in the Virgo constellation, NGC 4951 is located roughly 50 million light-years away from Earth. It’s classified as a Seyfert galaxy, which means that it’s an extremely energetic type of galaxy with an active galactic nucleus (AGN). However, Seyfert galaxies are unique from other sorts of AGNs because the galaxy itself can still be clearly seen – different types of AGNs are so bright that it’s nearly impossible to observe the actual galaxy that they reside within.

AGNs like NGC 4951 are powered by supermassive black holes. As matter whirls into the black hole, it generates radiation across the entire electromagnetic spectrum, making the AGN shine brightly.

Hubble helped prove that supermassive black holes exist at the core of almost every galaxy in our universe. Before the telescope launched into low-Earth orbit in 1990, astronomers only theorized about their existence. The mission verified their existence by observing the undeniable effects of black holes, like jets of material ejecting from black holes and disks of gas and dust revolving around those black holes at very high speeds.

These observations of NGC 4951 were taken to provide valuable data for astronomers studying how galaxies evolve, with a particular focus on the star formation process. Hubble gathered this information, which is being combined with observations with the James Webb Space Telescope (JWST) to support a JWST Treasury program. Treasury programs collect observations that focus on the potential to solve multiple scientific problems with a single, coherent dataset and enable a variety of compelling scientific investigations.


Download this image

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share

Details

Last Updated

May 06, 2024

Editor Andrea Gianopoulos Location Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From NASA

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Galaxies


Galaxies Stories


Black Holes

Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sun, 05/05/2024 - 4:00pm

Three bright objects satisfied seasoned stargazers of the western sky just after sunset earlier this month.


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sat, 05/04/2024 - 12:00pm

The


Categories: Astronomy, NASA

ARMD Solicitations

NASA - Breaking News - Fri, 05/03/2024 - 3:00pm

7 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Illustration showing multiple future air transportation options NASA researchers are studying or working to enable.NASA

This ARMD solicitations page compiles the opportunities to collaborate with NASA’s aeronautical innovators and/or contribute to their research to enable new and improved air transportation systems. A summary of available opportunities with key dates requiring action are listed first. More information about each opportunity is detailed lower on this page.

University Leadership Initiative
Key date: May 29, 2024

Commercial Supersonic Technology
Key date: May 31, 2024

University Student Research Challenge
June 20, 2024

Advanced Air Mobility
Key date: Feb. 1, 2025, at 6 p.m. EST

Advanced Capabilities for Emergency Response Operations

GENERAL ANNOUNCEMENT OF REQUEST FOR INFORMATION

Advanced Capabilities for Emergency Response Operations is using this request for information to identify technologies that address current challenges facing the wildland firefighting community. NASA is seeking information on data collection, airborne connectivity and communications solutions, unmanned aircraft systems traffic management, aircraft operations and autonomy, and more. This will support development of a partnership strategy for future collaborative demonstrations.

Interested parties were requested to respond to this notice with an information package no later than 4 pm ET, October 15, 2023, that shall be submitted via https://nari.arc.nasa.gov/acero-rfi. Any proprietary information must be clearly marked. Submissions will be accepted only from United States companies.

View the full RFI Announcement here.

Advanced Air Mobility Mission

GENERAL ADVANCED AIR MOBILITY
ANNOUNCEMENT OF REQUEST FOR INFORMATION

This request for information (RFI) is being used to gather market research for NASA to make informed decisions regarding potential partnership strategies and future research to enable Advanced Air Mobility (AAM). NASA is seeking information from public, private, and academic organizations to determine technical needs and community interests that may lead to future solicitations regarding AAM research and development.

This particular RFI is just one avenue of multiple planned opportunities for formal feedback on or participation in NASA’s AAM Mission-related efforts to develop these requirements and help enable AAM. 

The current respond by date for this RFI is Feb. 1, 2025, at 6 p.m. EST.

View the full RFI announcement here.

NASA Research Opportunities in Aeronautics

NASA’s Aeronautics Research Mission Directorate (ARMD) uses the NASA Research Announcement (NRA) process to solicit proposals for foundational research in areas where ARMD seeks to enhance its core capabilities.

Competition for NRA awards is open to both academia and industry.

The current open solicitation for ARMD Research Opportunities is ROA-2023 and ROA-2024.

Here is some general information to know about the NRA process.

  • NRA solicitations are released by NASA Headquarters through the Web-based NASA Solicitation and Proposal Integrated Review and Evaluation System (NSPIRES).
  • All NRA technical work is defined and managed by project teams within these four programs: Advanced Air Vehicles Program, Airspace Operations and Safety Program, Integrated Aviation Systems Program, and Transformative Aeronautics Concepts Program.
  • NRA awards originate from NASA’s Langley Research Center in Virginia, Ames Research Center in California, Glenn Research Center in Cleveland, and Armstrong Flight Research Center in California.
  • Competition for NRA awards is full and open.
  • Participation is open to all categories of organizations, including educational institutions, industry, and nonprofits.
  • Any updates or amendments to an NRA is posted on the appropriate NSPIRES web pages as noted in the Amendments detailed below.
  • ARMD sends notifications of NRA updates through the NSPIRES email system. In order to receive these email notifications, you must be a Registered User of NSPIRES. However, note that NASA is not responsible for inadvertently failing to provide notification of a future NRA. Parties are responsible for regularly checking the NSPIRES website for updated NRAs.
ROA-2024 NRA Amendments

Amendment 1
UPDATED MAY 3, 2024

(Full text here.)

Amendment 1 to the NASA ARMD Research Opportunities in Aeronautics (ROA) 2024 NRA has been posted on the NSPIRES web site at https://nspires.nasaprs.com.

The announcement solicits proposals from accredited U.S. institutions for research training grants to begin the academic year. This NOFO is designed to support independently conceived research projects by highly qualified graduate students, in disciplines needed to help advance NASA’s mission, thus affording these students the opportunity to directly contribute to advancements in STEM-related areas of study. AAVP Fellowship Opportunities are focused on innovation and the generation of measurable research results that contribute to NASA’s current and future science and technology goals.

Research proposals are sought to address key challenges provided in Elements of Appendix A.8.

Notices of Intent (NOIs) are not required.

A budget breakdown for each proposal is required, detailing the allocation of the award funds by year. The budget document may adhere to any format or template provided by the applicant’s institution.

Proposals were due by April 30, 2024, at 5 PM ET.

Amendment 2
UPDATED APRIL 5, 2024

(Full text here.)

University Leadership Initiative (ULI) provides the opportunity for university teams to exercise technical and organizational leadership in proposing unique technical challenges in aeronautics, defining multi-disciplinary solutions, establishing peer review mechanisms, and applying innovative teaming strategies to strengthen the research impact.

Research proposals are sought in six ULI topic areas in Appendix D.4.

Topic 1: Safe, Efficient Growth in Global Operations (Strategic Thrust 1)

Topic 2: Innovation in Commercial High-Speed Aircraft (Strategic Thrust 2)

Topic 3: Ultra-Efficient Subsonic Transports (Strategic Thrust 3)

Topic 4: Safe, Quiet, and Affordable Vertical Lift Air Vehicles (Strategic Thrust 4)

Topic 5: In-Time System-Wide Safety Assurance (Strategic Thrust 5)

Topic 6: Assured Autonomy for Aviation Transformation (Strategic Thrust 6)

This NRA will utilize a two-step proposal submission and evaluation process. The initial step is a short mandatory Step-A proposal due May 29, 2024. Those offerors submitting the most highly rated Step-A proposals will be invited to submit a Step-B proposal. All proposals must be submitted electronically through NSPIRES at https://nspires.nasaprs.com. An Applicant’s Workshop was held on Thursday April 3, 2024; 1:00-3:00 p.m. ET (https://uli.arc.nasa.gov/applicants-workshops/workshop8)

Amendment 3

NEW APRIL 5, 2024

(Full text here)

Commercial Supersonic Technology seeks proposals for a fuel injector design concept and fabrication for testing at NASA Glenn Research Center.

The proposal for the fuel injector design aims to establish current state-of-the-art in low NOx supersonic cruise while meeting reasonable landing take-off NOx emissions. The technology application timeline is targeted for a supersonic aircraft with entry into service in the 2035+ timeframe.

These efforts are in alignment with activities in the NASA Aeronautics Research Mission Directorate as outlined in the NASA Aeronautics Strategic Implementation Plan, specifically Strategic Thrust 2: Innovation in Commercial High-Speed Aircraft.

Proposals due by May 31, 2024 at 5 pm EDT.

ROA-2023 NRA Amendments

Amendment 5
UPDATED MAY 3, 2024

(Full text here)

Amendment 5 to the NASA ARMD Research Opportunities in Aeronautics (ROA) 2023 NRA has been posted on the NSPIRES web site.

University Student Research Challenge (solicitation NNH23ZEA001N-USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.

The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.

Notices of Intent (NOIs) are not required for this solicitation. Three-page proposals for the next USRC cycle are due June 20, 2024.

The USRC Cycle 4 Q&A/Info Session and Proposal Workshop will be held on Monday, May 6, 2024 at 2pm ET. Please join us on TEAMS using the Meeting Link below, or call in via +1 256-715-9946,,176038745# Phone Conference ID: 176 038 745#

https://teams.microsoft.com/l/meetup-join/19%3ameeting_N2M5NzhkMmEtMjU5Zi00MmM3LTg2YmItMDlhMjc5M2Q1YzY5%40thread.v2/0?context=%7b%22Tid%22%3a%227005d458-45be-48ae-8140-d43da96dd17b%22%2c%22Oid%22%3a%22831a92f6-eb15-4049-a85e-5a2b0f7a90c7%22%7d

Amendment 4 (Expired)
(Full text here)

Amendment 3 (Expired)
(Full text here)

Amendment 2 (Expired)
(Full text here)

Amendment 1 (Expired)
(Full text here)

Keep Exploring See More About NASA Aeronautics

Aeronautics STEM

Aeronautics Research Mission Directorate

The National Advisory Committee for Aeronautics (NACA)

Aeronáutica en español

Share Details Last Updated May 03, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
Categories: NASA

Former NASA Center Director, Scientist to Receive Presidential Medals

NASA - Breaking News - Fri, 05/03/2024 - 2:47pm
Medals of Freedom are displayed Thursday, July 7, 2022, before a ceremony at the White House. (Official White House Photo by Cameron Smith)

President Joe Biden will present Dr. Ellen Ochoa, former center director and astronaut at the agency’s Johnson Space Center in Houston, and Dr. Jane Rigby, senior project scientist for NASA’s James Webb Space Telescope, each with the Presidential Medal of Freedom Friday in a ceremony at the White House in Washington.

The Presidential Medal of Freedom is the nation’s highest civilian honor award, and these two NASA recipients are among the 19 awardees announced May 3. Ochoa is recognized for her leadership at NASA Johnson and as the first Hispanic woman in space, and Rigby is recognized for her work on leading NASA’s transformational space telescope.

“I am proud Ellen and Jane are recognized for their incredible roles in NASA missions, for sharing the power of science with humanity, and inspiring the Artemis Generation to look to the stars,” said NASA Administrator Bill Nelson. “Among her many accomplishments as a veteran astronaut and leader, Ellen served as the second female director of Johnson, flew in space four times, and logged nearly 1,000 hours in orbit. Jane is one of the many wizards at NASA who work every day to make the impossible, possible. The James Webb Space Telescope represents the very best of scientific discovery that will continue to unfold the secrets of our universe. We appreciate Ellen and Jane for their service to NASA, and our country.”

Dr. Ellen Ochoa

Credit: The White House

Ochoa retired from NASA in 2018 after more than 30 years with the agency. In addition to being an astronaut, she served a variety of positions over the years, including the 11th director of NASA Johnson, Johnson deputy center director, and director of Flight Crew Operations.

She joined the agency in 1988 as a research engineer at NASA’s Ames Research Center in Silicon Valley, California, and moved to NASA Johnson in 1990 when she was selected as an astronaut. Ochoa became the first Hispanic woman to go to space when she served on the nine-day STS-56 mission aboard the space shuttle Discovery in 1993. She flew in space four times, including STS-66, STS-96 and STS-110.

Born in California, Ochoa earned a bachelor’s degree in Physics from San Diego State University and a master’s degree and doctorate in Electrical Engineering from Stanford University. As a research engineer at Sandia National Laboratories and NASA Ames Research Center, Ochoa investigated optical systems for performing information processing. She is a co-inventor on three patents and author of several technical papers.

“Wow, what an unexpected and amazing honor! I’m so grateful for all my amazing NASA colleagues who shared my career journey with me,” said Ochoa upon hearing the news of her Presidential Medal of Freedom award.

During her career, Ochoa also received NASA’s highest award, the Distinguished Service Medal, and the Presidential Distinguished Rank Award for senior executives in the federal government. She has received many other awards and is especially honored to have seven schools named for her.

Ochoa also is a member of the National Academy of Engineering, and formerly chaired both the National Science Board and the Nomination Evaluation Committee for the National Medal of Technology and Innovation.  

Dr. Jane Rigby

Credit: The White House

Rigby, who was born and raised in Delaware, is honored with the Medal of Freedom for her role in the success of NASA’s Webb mission – the largest, most powerful space telescope launched on Dec. 25, 2021 – as well as her longtime support of diversity and inclusion in science.

She is an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She provides scientific leadership for Webb, which has made pioneering discoveries about the secrets of our universe and inspired the world in its first two years of science operations. Rigby worked on the development of Webb for many years, and subsequently led the characterization of Webb’s science performance, which now is exceeding expectations, and frequently shares the progress of Webb science with the public.

“Webb has become a symbol not only of technical excellence and scientific discovery, but also of how much humanity can accomplish when we all work together,” Rigby said. “I’m so proud and grateful to lead the amazing Webb team.”

Rigby is an active researcher, developing new techniques to better understand how galaxies evolve over time and form stars. She has published 160 peer-reviewed publications and has been recognized with awards such as NASA’s Exceptional Scientific Achievement Medal, the Fred Kavli Prize Plenary Lecture from the American Astronomical Society (AAS), and the 2022 LGBTQ+ Scientist of the Year from Out to Innovate.

“Thousands of people around the world came together to build Webb,” said Rigby. “The engineers who built and deployed Webb were critical to Webb’s success, and now thousands of scientists around the world are using Webb to make discovery after discovery.” To represent those contributions, in addition to inviting her family to the Medal of Freedom ceremony, Rigby invited her colleague Mike Menzel, Webb lead mission systems engineer at NASA Goddard, and Dr. Kelsey Johnson, president of the American Astronomical Society.

Rigby also serves as a trustee of the AAS and was a founding member of the AAS Committee for Sexual-Orientation and Gender Minorities in Astronomy. She holds a doctorate in Astronomy from the University of Arizona, as well as a bachelor’s degree in Physics, as well as another in Astronomy and Astrophysics from Penn State University.

NASA’s James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Learn more about NASA’s missions at:

https://www.nasa.gov

-end-

Cheryl Warner / Karen Fox
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov / karen.c.fox@nasa.gov

Laura Betz
Goddard Space Flight Center, Greenbelt, Md.
301-286-9030
laura.e.betz@nasa.gov

Share Details Last Updated May 06, 2024 EditorTiernan P. DoyleLocationNASA Headquarters Related Terms
Categories: NASA

A Moonlit Trio

NASA Image of the Day - Fri, 05/03/2024 - 1:55pm
The Moon, left, Jupiter, right, and Saturn, above and to the left of Jupiter, are seen after sunset with the Washington Monument, Thurs. Dec. 17, 2020, in Washington. The two planets drew closer to each other in the sky as they headed towards a “great conjunction” on Dec. 21, where the two giant planets appeared a tenth of a degree apart.
Categories: Astronomy, NASA